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RiskRay: Detecting hips at risk of fracture 
using machine learning 

Motivation 
Millions of people suffer from hip fractures worldwide every year. They are a 

hallmark fracture of osteoporosis, with 70-90% of fracture cases stemming from this 
disease. According to a 1993 study, the first year of costs for a patient with a hip frac-
ture in the US is $26,000 USD[1].


The current gold standard for detecting if a hip is at risk of fracture is using Dual 
Energy X-ray Absorptiometry, “DEXA”. The procedure involves using two different en-
ergies of x-rays, and without describing the entire process, produces a measurement 
of bone density. This measurement, however, is known to have significant variation (as 
much as 30%) across its many manufacturers and instantiations. Access to these ex-
pensive machines is limited, and may have patients waiting weeks or months for their 
appointment, which cost around $106 CAD per test, in 2006.


With all of this in consideration, and the fact that this technique was developed 
and deployed in the 1960’s, we believe there is an opportunity for this technology to be 
superseded. Our machine learning architecture presents an approach that is not only 
more accurate, but would be significantly faster and cheaper, with technicians/doctors 
easily executing the utility in tandem with a patient’s hip x-ray.


Architecture 
Neural Network Model 

Supervised machine learning (ML) is a style of ML where data is labeled by a 
human (or other means) from a limited set of labels. The ML model is then tuned or 
“trained” to identify the label(s) on new data previously unseen. Ultimately, it is a form 
of pattern recognition, and part of our investigation is to answer the question: Is there 
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visual information contained in x-ray images of at-risk hips vs. healthy hips that could 
be picked up by a ML model? When optimized, ML image recognition can notice the 
subtlest of signatures and could be able to pick up on details that evade even a pro-
fessional’s eye. We aim to also incorporate an x-rays metadata into the network, since 
information like subject’s age will aid in the model’s assessment.


Getting a labeled dataset is often the road block in a supervised learning pipe-
line. We introduce a novel key insight for building up this dataset. If a hip fracture oc-
curs on one side of the body, then the opposite hip can be marked as an at-risk hip 
(conditional on hip health being at least in some part responsible for the fracture). 
These at-risk hips that are the counterparts of fractured hips can form the at-risk por-
tion of the dataset. We then complete the dataset with images of x-rays of healthy hips.


With this method, we compiled a dataset of 113 at-risk hip x-rays and 360 
healthy, “control”, hip x-rays, for 473 images total which were divided as 378 Training 
images, and 95 Test images (20 at-risk, 75 healthy/control). Indeed, this approaches 
the lower bound of an acceptable dataset size in this context, but is enough to be 
worth the experiment.


We used a Mixed Data neural network (MDNN) architecture that had two main 
components, followed by a concatenating layer. The first main block was a regular im-
age processing network of two Convolutional Neural Networks (CNNs) and a Multilayer 
Perceptron (MLP) layer. The second was a small MLP applied to image metadata in-
cluding the patient age and a small number of x-ray fields: kVP, distance-to-detector, 
and exposure time. The output from these two main channels were concatenated in a 
layer that passed through another MLP before outputting the final logistic result in the 
range [0, 1] (at-risk or control). By default, values >0.5 are approximated as at-risk, and 
those <=0.5 are considered control. In future iterations of this architecture, adding 
more fields to the second block of metadata fields would be interesting. For example, 
the answer to “Is there a history of osteoporosis in your family?” Finally, a 3rd party 
open source software package Ray Tune was used to systematically optimize hyperpa-
rameters across various runs.
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Final RiskRay Product 
The final RiskRay product will consist of 3 main components that function to in-

take a hip x-ray/DICOM, and output a normalized category of risk, a “Risk Rating” or 
“Risk Score”, for the user. The components are:


1. An X-ray/DICOM cropping software utility that technicians can use to click & 
drag the hip region in a patient’s x-ray. This cropped portion is input into the 
MDNN for the next phase.


2. The MDNN intakes the hip image and outputs a its classification in the range 
[0, 1], where 0 is towards healthy hips and 1 towards at-risk hips.


3. The classification is further categorized using the mapping in Table 1 to output 
a normalized Risk Rating.


It’s worth noting that the network’s output in the range [0, 1] is quite natural, really, as 
even humans often only have a partial degree of certainty in their estimations. Note that 
the Risk Rating categorization matrix in Table 1 is a suggestion and is subject to 
change.


Results & Discussion 
Performance 

Over the course of searching the hyperparameter space with RayTune, over 300 
trials had been run, evaluating small (~5e3 parameters) to larger network sizes (~5e6 
parameters). Of course, 5e6 parameters is still modest, but performance seemed to 
plateau before this size anyway. In this section we will look at a single run from the 
larger network which performed well, though its results are not unique to this run. 
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Output Risk Rating

[0, 0.4] Healthy

[0.4, 0.6] Moderate

[0.6, 1.0] At risk

Table 1. MDNN Output to Risk Rating
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The model evaluation was performed on 95 (20 at-risk) images unseen during 
training. I will spare explaining all the evaluation metrics in full detail, but will offer brief 
descriptions. Models were evaluated against a thorough suite of metrics. Throughout, a 
“Positive” result is the model outputting an estimate that is greater than some thresh-
old (which is by default 0.5), and in our case indicates an At-risk hip:


1. Precision: What fraction of our estimated Positives were True Positives?

2. Recall: What fraction of our At-risk hips were detected as Positive?

3. F1: Harmonic mean of Precision and Recall together. Range is [0,1].

4. Confusion Matrices: A snapshot of the distribution of True Positives (TP), 

False Positives (FP), True Negatives (TN), and False Negatives (FN).

5. ROC & AUC: The probability that a positive sample will be ranked higher 

than a negative sample.


In our case, we are inclined to value Recall over Precision. These two metrics 
are at odds in practical contexts. High precision indicates a very selective, stringent 
model that tries to minimize False Positives (healthy hips reading as at-risk). However, 
this comes at the cost of letting at-risk hips slip through unnoticed (increased False 
Negatives, low recall). High recall indicates that we are doing well at capturing at-risk 
hips, but this looser restriction lets more False Positives through. In medical ap-
plications, high recall is often preferred so positives are not missed, with the downside 
of potentially treating false positives. It is not a zero-sum game however, and better 
models will indeed score better at both precision and recall than a lesser model (which 
is neatly captured in the F1 score).


ROC and AUC are common metrics for classification estimators like ours. The 
ROC curve, as will be shown, plots True Positive Rate (TPR) vs False Positive Rate 
(FPR) as the classification/decision threshold is swept from [0, 1]. By default, the 
threshold is 0.5—an estimate of 0.6 gets rounded to 1 as Positive result and vice-versa. 
However, an estimator may still be an effective discriminator, separating positives from 
negatives, but about a different threshold. For example, it estimates positives to be 
roughly in the range [0.3, 0.4] and negatives to be [0.1, 0.2]. At a threshold of 0.5, this 
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model performs terribly, but not at a threshold of 0.25. If an estimator perfectly sepa-
rates its test dataset, the ROC curve will be a square, TPR=1 constant (See our figure 
below for a sense of this), AUC (Area under the curve) would be its maximum at 1. In 
reality, there is mixing of FPs and FNs, which reduces the curve away from a square, 
AUC<1. The worse this mixing, the worse your AUC, and a slope of 1 is as good as 
random estimation.


First, we’ll look at the sample run’s TP, FP, FN, TN distribution (Fig 1), and the 
Precision, Recall, F1-score (Table 2). By Fig 1, the model shows a bias towards the 
Control class, with only 6 of 75 Controls being FP. It would be better to see more of the 
At-risk images correctly identified, 9 of the 20 were FN, lowering our recall. The Posi-
tive precision was somewhat better with only 6 of 20 being FP. Overall, this this model 
correctly labeled 80 of 95 images, giving an accuracy of 84%, and a “balanced” accu-
racy (the mean accuracy by class) of 74%.
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Fig 1: Confusion matrix
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The Precision, Recall, and F1-score are given in Table 2. “Support” is the num-
ber of images of that type in the Test dataset. “Macro Average” is the flat average of 
the metric values, and “Weighted Average” weights the metrics by their Support count.


Figure 2 displays the ROC curve for our sample. There is not so much insight to 
be gathered form the form itself, beyond that it directs towards TPR=1 as it should, but 
an AUC of 0.82 is a good sign. Clearly there is some degree of class separation.


Overall, from these results it stands to reason that this network is indeed learn-
ing some feature present in the dataset. Again, the purpose of this study was to see if 
there was “something there” worth pursuing, and to that end it is successful.
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Table 2. Performance metrics on selected model

Label Precision Recall f1-score Support

Control 0.88 0.92 0.90 75

At-risk 0.65 0.55 0.59 20

Macro Avg 0.77 0.74 0.75 95

Weighted 
Avg

0.83 0.84 0.84 95

Fig 2. ROC
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Sample Inspection 
It is also worth getting a visual on what the model evaluates on given images. In 

the images below, Figures 3 & 4, two batches of images are taken from the Test set for 
a visual inspection on network output. For the given input images, the model output 
percentages are overlain in red text along with the category of image: “Ctrl” or “Risk”. 
Most of the output samples are ideal, approaching the “Healthy” Risk Score for the 
control batch, and the “At Risk” Risk Score for the at-risk batch. However, exceptions 
can be found in either batch. Part of this is likely from the limited number of images to 
train our model. However, it is important to remember the inherent, and limiting, chaos 
of the data—at least in this pilot context. From the data gathered for this study, there is 
contamination across both control and at-risk groups because, for example, a hip 
might be in reality at risk, but still be in the control set because the patient hasn’t frac-
tured their hip yet. Conversely, a control hip could be in the at-risk group if the patient’s 
fracture was due to external circumstances and not hip-health per se.
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Fig. 3. Test-set control images and the selected model estimations.
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Fig 3. Test-set at-risk images and the selected model estimations.
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