
PHYSICAL REVIEW E 99, 062701 (2019)

Machine learning topological defects of confined liquid crystals in two dimensions

Michael Walters, Qianshi Wei, and Jeff Z. Y. Chen*

Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1

(Received 5 February 2019; published 10 June 2019)

Supervised machine learning can be used to classify images with spatially correlated physical features. We
demonstrate the concept by using the coordinate files generated from an off-lattice computer simulation of
rodlike molecules confined in a square box as an example. Because of the geometric frustrations at high number
density, the nematic director field develops an inhomogeneous pattern containing various topological defects
as the main physical feature. We describe two machine-learning procedures that can be used to effectively
capture the correlation between the defect positions and the nematic directors around them and hence classify
the topological defects. First is a feedforward neural network, which requires the aid of presorting the off-lattice
simulation data in a coarse-grained fashion. Second is a recurrent neural network, which needs no such sorting
and can be directly used for finding spatial correlations. The issues of when to presort a simulation data file and
how the network structures affect such a decision are addressed.

DOI: 10.1103/PhysRevE.99.062701

I. INTRODUCTION

The use of neural networks as a tool in condensed
matter research has seen a growth in popularity. One of
the marvels and advantages of this technique is how little
statistical-physics information (energies, order parameters,
etc.) is needed for the classification of states or the pinpointing
of critical physical parameters. Even relatively simple neural
network models can learn phase-transition temperatures, order
parameters, and quantum-state tomography, from the infor-
mation of a simple feature such as position coordinates in an
off-lattice model or the location and value of spins in an Ising
model. This could all be done without any knowledge of the
original Hamiltonian or interaction potential energies [1–7].

One of the simplest neural networks is the feedforward
neural network (FNN). A powerful tool, FNNs are able to
accomplish a variety of image recognition tasks [8], a frequent
benchmark test being the MNIST handwritten digit data set
[9]. Figure 1(a) shows one such digit from the MNIST set.
Increasing the size and depth of a network boosts its ability to
learn more complex patterns and features contained in images
and then recognize these learned patterns in a new image. An
extension of the FNN, the convoluted neural network (CNN),
has the network structure organized in such a way that local
features of a pattern are dissected [10]. CNNs have thus been
a natural choice for condensed matter research, in particular
problems on lattices such as the Ising model [2], the XY model
[7], correlated fermions [11,12], and other quantum systems.

In condensed matter physics we often deal with ordered
states, where certain physical features display spatial corre-
lations in long range. Two typical examples are shown in
Fig. 1. In the ferromagnetic state, within an ordered domain
spins align in one direction, as illustrated in Fig. 1(b). In
the nematic liquid crystal state, within an ordered domain

*jeffchen@uwaterloo.ca

molecular directions are all aligned towards a common angle
[Fig. 1(c)]. The images produced in these examples come
from Monte Carlo simulations (see Appendix A for the current
liquid-crystal system). Here, an “image” used for network
learning is not a graphic image in the conventional sense.
Rather, it is represented by the system configuration data
containing physical features of each molecule (values of spins,
angles specifying the orientations, etc.).

These ordered states, however, sometimes have topological
defects in their substantially ordered background. Different
patterns can be characterized by different ways in which
the local order parameters around the defects couple with
the locations of the defects. Developing a characterization
procedure to categorize these defects is a challenging task. A
neural network (NN), then, becomes an ideal tool to identify
these topological defects. In studying the Kosterlitz-Thouless
transition of the XY model [7], a multilayered network was
trained on raw orientational configurations to learn the vor-
tex unbinding that marks the transition. Accomplishing this
requires the NN to understand topological features not too
unlike the liquid crystal topologies in Figs. 1(e)–1(h). It would
seem then that feeding the liquid crystal configurational data
in a similar fashion should enable the identification of defects
in ordered states.

However, we show here that such network structures are
not readily appropriate for studying defect types of off-
lattice problems, such as the liquid-crystal defects shown in
Figs. 1(e)–1(h). A typical configuration file generated from
the computer simulations has a single-line data structure
[l, xl , yl , θl] for a given molecule, where l is the label of a
molecule, and [xl , yl , θl] specify its x and y location coor-
dinates and angular orientation [see Fig. 1(d)]. Because the
molecules are allowed to randomly move in space, the label
of a molecule, l , has no relationship at all with the spatial
coordinates [see Fig. 1(c)]. This can be contrasted with a
simulated data file produced by a lattice model. In such a
case, positional information is already embedded in the order

2470-0045/2019/99(6)/062701(10) 062701-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.062701&domain=pdf&date_stamp=2019-06-10
https://doi.org/10.1103/PhysRevE.99.062701

WALTERS, WEI, AND CHEN PHYSICAL REVIEW E 99, 062701 (2019)

FIG. 1. (a–d) Illustration of a two-dimensional handwritten image, Ising model, nematic state, and coordinates for a rodlike molecule, as
well as (e–h) example configurations of different defect states generated from Monte Carlo simulations for a confined rodlike nematic fluid.
The parameters used to generate these example configurations are [N, a/L] = [784, 6.32]. The defect state in (e) has a diagonal (D) pattern,
and the nematic textures in (f–h) resemble the tilted letter T, letter U, and letter X. The yellow and blue circles mark the defect locations of −1
and −1/2 winding numbers, respectively.

in which molecules are labeled (one naturally reads the data
in the same order every time), as demonstrated by the green
arrow in Fig. 1(b). An NN that attempts to capture position-
correlated patterns is thus implicitly aided from this direct
mapping of physical position to the ordering of data in a lattice
model.

Hence, we must solve how to capture the main features
in a topological-defect state when the correlation between
defect positions and the physical properties around them is
the vital property. In this paper we discuss different ways of
incorporating existing NNs for this purpose. As it turns out,
an FNN (and conceivably a CNN) finds correlation between
the order of appearance of data in the input and the physical
features to be correlated. Hence, FNNs and CNNs can identify
defect states resultant from the Ising model since the ordering
of data already represents the spin positions. However, in an
off-lattice model, l has no correlation with [xl , yl , θl]. Even
if we use xl , yl as an input together with θl , an FNN cannot
find the correlation between l and the input features [xl , yl , θl].
This is discussed in Sec. III.

Can we reconnect a relationship between l and xl , yl that
can be easily used by an FNN for an off-lattice dataset? In
Sec. III we develop and discuss a coarse-graining method
which cuts the original simulation box into m × m equally
sized cells where m = 1, 2, 4, 8... The NN input is then
ordered by cell index M, with the information inside each
cell unordered. By such means, it is as though the system is
approximated to a lattice form, with increasing accuracy as the
cells become smaller and more numerous. An FNN can then

begin to correlate physical features with position and identify
topological defects with appropriate cell size.

We present another more general method, using a recurrent
neural network (RNN), that avoids the need for any presort-
ing. The RNN is a neural network specialized in correlating
sequential information (e.g., analyzing a time series of images
[13], or predicting upcoming words in a sentence based on
previous words [14,15]). In Sec. IV, we propose a scheme
to feed x, y, and θ data sequentially, akin to three time
sequenced images, which enables the RNN to correlate these
three features. Turning temporal correlation to spatial corre-
lation, an RNN can efficiently identify topological defects in
the original raw data, without any of the coarse-graining or
presorting needed for the FNN.

We selected the topological defects appearing in the system
of N rodlike molecules confined by a square boundary in two
dimensions (2D) as a vehicle to deliver the concepts in this
paper. This system has been the focus of recent theoretical
and experimental studies due to its practical relevance [16–19]
and interesting theoretical aspects [18,20–25]. For example,
the possible defect states were recently studied in-depth in
terms of the continuum Landau-de Gennes model [24] and
the Onsager model [25], producing a comparable ensemble
of stable and metstable states as the result of minimizing the
free energies in these different models. Our aim here is not a
detailed study of this particular liquid crystal system, to which
we direct the readers to the above references for more details
on their significance and origin. Rather, we selected four
major defect states, D, T, U, and X, shown in Figs. 1(e)–1(h),

062701-2

MACHINE LEARNING TOPOLOGICAL DEFECTS OF … PHYSICAL REVIEW E 99, 062701 (2019)

for use in our machine-learning study on the molecular-level
data files. For this purpose, we developed a Monte Carlo algo-
rithm to produce the necessary data. The computer simulation
procedure, as well as the system’s isotropic-nematic transition
properties, are explained in Appendices A and B.

The location of the nematic defect points are indicated
in Figs. 1(e)–1(h) by colored circles. Here we see only two
types of defects: those with winding number −1/2 (blue) and
−1 (yellow). Although one could argue that the defects are
pointlike local objects, in a finite system, the overall nematic
ordering in separate bulk areas are strongly connected with
these local features. Each topology has a unique arrangement
of the defect locations and overall nematic texture.

Returning to the classic example of identifying handwritten
numerical digits from 0 to 9, we make a comparison between
the darkened pixels in this case with the topological defects in
our confined liquid crystal system. In a sense, what a neural
network looks for is the feature correlation of the spatial
position of the darkened pixels in these images. In Appendix
D, we reenforce some of our concepts mentioned above, by
treating the digit recognition problem as a defect identification
problem.

This work is motivated by the question of whether machine
learning can be used to identify topological defects, which in
this case are those of confined two-dimensional liquid crys-
tals. We clearly make recommendations on data handling and
the choice of neural network, suitable for defect identification;
these can form useful steps for more general problems in
studying other condensed matter systems, in particular, data
generated from off-lattice models.

II. PREPARATION OF THE TRAINING AND
TESTING DATA

The physical system studied here is the defect states gener-
ated from the MC simulation of a two-dimensional off-lattice
liquid-crystal model. In total, N = 784 rodlike molecules of
length L are confined to a square box of dimensions a × a.
Mutual crossing of rods and crossing of box boundaries by
rods are disallowed to simulate the excluded-volume interac-
tions. Monte Carlo details can be found in Appendix A.

One can show that the parameter that drives the phase
transition is the reduced density,

ρ ≡ NL2

a2
. (1)

Above the critical value ρ∗ the system is in a nematic state
with directional ordering and below the critical value the
system is in an isotropic state with random orientations (ex-
cept those near the walls). The critical density ρ∗ � 6.71
can be estimated from a typical machine-learning application,
described in Appendix B.

Our main concern here is identifying the defect states,
not the isotropic-to-nematic phase transition itself. Within the
nematic state, the system can display a stable D-defect pattern,
or can be trapped in the free energy minima corresponding
to one of the X-, T-, or U-defect patterns, due to the finite
confinement effects. The nature of the metastability has been
recently addressed extensively in Refs. [16–23]. To explore
the best machine-learning techniques in identifying the defect

states, we established a database from the MC simulations
at a fixed ρ = 19.63 (produced by setting a = 6.32L). The
relatively high ρ enables the trapping of the metastable defect
patterns during simulation runs. In total, 4400 independent
configurational snapshots were collected for each of the defect
states [see Appendix A]. Out of these, 400 snapshots were
reserved for as the testing dataset.

For each defect type in Figs. 1(e)–1(i), 4000 snapshots
were used for training. A typical defect pattern can be rotated
by a π/2-, π -, or 3π/2-angle and maintains its topological
structure, because of the square boundary geometry. Since
these 4000 snapshots were taken from MC simulations, they
already contain all different orientations of the defect pattern
naturally. To ensure that all four orientations of the square
boundary are indeed equally treated, we further rotate these
4000 snapshots by these angles, to finally build up a training
set of the size 16 000.

The raw dataset of each snapshot contained coordinate
data ordered by the label of molecules, l , and followed by
[xl , yl , θl] [see Fig. 1(d)], where l = 1, 2, ..., N . The treatment
differs from the pixel approach of a digital image, for which a
pixel grid system would be established.

III. APPLICATION OF FNN

First we review a few basic neural network concepts. The
main function of an NN is to read the system configuration
through an input layer (e.g., an image, text, or sound bite),
process the information in hidden layers, and then generate
an output. The output is often a classification estimation of
the input, but may be another data structure (another image
or sound bite for instance). In our case we look to classify
system states through an FNN, sketched in Fig. 2(a). Each
arrow (an “edge”) represents a function call that connects
nodes in different layers. These nodes, or “perceptrons,” are
inspired by the neuron model of the brain and are the building
blocks of many neural networks, including the FNN, and
though individually quite simple, complex functions can be
represented by networking many perceptrons together [26].
Going from input to output, data is repeatedly manipulated
through function calls at each layer, with each containing
their own network parameters—usually referred to as weights
and biases. By varying network parameters the final output is
consequently affected. Training a network then involves opti-
mizing the network’s performance in producing the desirable
output with respect to these network parameters. Within one
“epoch” the network is trained once on the entire training set,
and in general multiple epochs are needed for a network to
converge to an acceptable performance.

A few technical details are provided. We used a multilayer
perceptron FNN of modest size, having two hidden layers:
the first of size 128, and the second of size 32. With the
implementation of Tensorflow, exponential linear units were
the chosen neurons for their proven effectiveness and quick
learning [27,28], and an early stopping technique determined
sufficient training time [29]. Dropout was used at a 50%
drop rate to reduce overfitting the training [30]. The Adam
algorithm was used for optimization [31], and Softmax was
applied to the output neurons to normalize the output set [see
Appendix C]. For evaluating NN performance, a separate test

062701-3

WALTERS, WEI, AND CHEN PHYSICAL REVIEW E 99, 062701 (2019)

FIG. 2. Schematics of (a) an FNN with two hidden layers and the
sequence (xl , yl , θl) as input, where l = 1, 2, ...N , and (b) an RNN
(unrolled) with the sequence xl (l = 1, 2, ...N) as the input to the
first LSTM block, yl (l = 1, 2, ...N) to the second LSTM block, and
θl (l = 1, 2, ...N) to the third LSTM block. LSTM blocks also have
LSTM-LSTM connections. The final output of the two networks are
ν1, ν2, ..., νn, where n is adjusted according to the type of features to
be identified.

dataset of images not seen during training is needed. A useful
NN model needs to be able to correctly classify images it has
not been trained on, otherwise it may merely have found a set
of parameters that only work for the training set.

We used cross entropy S as the cost function to measure the
training quality on the training data set; plotted as a function
of epoch, we can see how the model learns over time and es-
timate its learning trajectory. When the network is adequately
trained, S approaches 0. Another unique insight into the
network’s performance is the accuracy A, defined to measure
the network performance on the unseen test set. An accuracy
of 1 is scored for correct classification on the entire test set.
Both S and A are quantitatively defined in Appendix C.

A naive approach would be directly taking an FNN for
identifying these defect states, sequentially feeding the raw
[xl , yl , θl] data into the 3N input nodes, and training the net-
work to recognize the four different topologies by supervised
learning [see Appendix C]. This approach has seen success
in learning phase transitions of Ising systems [2], polymer
systems [3], and the XY model [7]. However, this method
showed a pronounced failure in the current application. As we
show in Fig. 3(a), indicated as m = 1, this approach does not
come close to an acceptable performance, producing a plateau
in an undiminishing cost. In addition, A reaches a plateau at
an unsatisfactory level of approximately 60%.

Why is this so? One of the essential features the network
needs to learn for these defect configurations is the correlation
between the position of a topological defect and the molecular
orientation in the vicinity of the defect. A typical raw snapshot
datafile records the [x, y, θ] data sequentially according to the
order of the label of the rodlike molecules l . Because there
is no a priori knowledge of which molecules show up in the
defect regions, the labels of the defect-region molecules differ
from file to file. Indeed, in a statistically independent set of
files, such as the ones produced here from different initial
conditions [see Appendix A], there are no label-position cor-
relations of the defect-region molecules among the learning
data files. This all addresses a crucial, but often unnoticed,
aspect of image classification: by filling input vectors in a
positionally sorted fashion [Figs. 1(a) and 1(b)], positional
information, and indeed its correlation to whichever feature
is being written to the input vector, is consequently encoded.
If this sorting is destroyed, even if we give the positions (such
as [x, y]) as part of the input data, then the position-feature
(e.g., θ) correlation is destroyed. This unseen property, and
its essential importance can also be demonstrated via the digit
recognition problem in Appendix D.

Hence, the key information is the position sorting in the
initial data input, as the FNN relates features with the ordering
of the input data. We develop the following coarse-graining
procedure to train an FNN in identifying liquid crystal defects
shown in Fig. 1.

The confinement box (Fig. 1) is divided into m × m cells,
where m is an integer. The cells are labeled M = 1, 2, ...m ×
m horizontally, row by row. The raw data in every snapshot is
consequently presorted according to the center-of-mass coor-
dinates of the molecules, [x, y], so that molecules belonging
to the M = 1 cell show up first, M = 2 cell show up second,
etc. Within a cell, the order of data is still random and no
further presorting is made. If a rod extends into multiple cells,
then the fixed input vector size demands it only to appear
once in the input list; the center of mass of the rod makes
a natural choice. The m = 1 case returns to the raw data
format. By the end, the order of appearance of molecular

062701-4

MACHINE LEARNING TOPOLOGICAL DEFECTS OF … PHYSICAL REVIEW E 99, 062701 (2019)

FIG. 3. Cost function S and accuracy A, defined on the training and test datasets respectively, monitored on an FNN [(a) and (b)] and
RNN [(c) and (d)] as functions of epoch step. Symbols in the plots represent the averaged S and A produced from 20 repeated training runs,
from which errorbars are also estimated. Circles, squares, triangles, and diamonds in (a) and (b) correspond to the degrees of coarse-graining
in the presorting procedure used: m = 1 (unsorted raw data), 2, 4, and 8, respectively. For coarse-graining, the original simulation box in
Figs. 1(e)–1(h) is divided into m × m cells [see Sec. III]. The circles in (c) and (d) also represent the same averaged S and A, where an RNN
was used with raw, unsorted data as the input (i.e., m = 1).

information is no longer according to l , but, according to M
for all coarse-graining degree m � 2. The presorted data is
then used in supervised training.

The presorting procedure works well with an FNN. Fig-
ures 3(a) and 3(b) show how the cost function and accuracy
quickly approach the ideal value of 0 and 1, respectively, as we
presort the data beyond m = 2. In the case of m = 4, 8, less
than 20 epochs (surprisingly short) are needed to adequately
train the FNN. This can be attributed to the defect patterns in
Fig. 1 themselves. By dividing the square box in m = 4 cells,
for example, one can already distinguish the defect structures,
by ignoring fine details inside a single cell. Of course, in
general we expect that the degree of coarse-graining, m, needs
to increase for a more complicated defect pattern with more
defect features.

In summary, to effectively train an FNN to identify features
in an image or simulation data file, the ordering of data
points (pixels in image, spins in the Ising model, and rodlike
molecules in the current study) contains vital information
of the data. An off-lattice model usually produces data with
a random order and it must be presorted according their
approximate [x, y] coordinates, if we look for the correlation
between coordinates and the physical features.

IV. APPLICATION OF RNN

A typical structure of the recurrent neutral network (RNN)
is represented in Fig. 2(b). The crux of this RNN is the long
short-term memory (LSTM) cell module [32]. An RNN can

be made with different types of modules, but the LSTM is
a popular choice and is well-sufficient for this work. Except
for the first block, an LSTM cell has two input channels: an
LSTM-external connection to new raw data from the system
to be studied, and an LSTM-LSTM connection, taking its
own output and internal weights from the previous step as
input, hence the recurrent aspect. Schematically, it helps to
represent this as a series of LSTM cells for each raw data
input. To complete the RNN, a single layer of perceptrons
is appended to act as a final interpretive layer of the LSTM
output, compressing the large LSTM output to the smaller
prediction output (ν1, ν2, ..., νn).

RNNs initially gained popularity for time series applica-
tions. An LSTM cell can take a complete data file and at
each iteration of input, consider the new raw data together
with its own previous state simultaneously. That is, an LSTM
establishes data correlations with those fed into earlier cell
states through LSTM-LSTM connections. In its composition,
like an FNN, an RNN (including the LSTM) is still merely an
ensemble of floating-point network parameters. The logic of
supervised training is the same here as with an FNN: deter-
mination of the network parameters through optimization of a
cost function. The RNN can be coded in terms of Tensorflow
libraries efficiently.

Here we demonstrate a novel usage of an RNN in con-
densed matter systems. Exploiting its ability to correlate phys-
ical features through LSTM blocks, we adopt a triple iterative
structure shown in Fig. 2(b) to find the correlation between the
spatial coordinates x, y and the orientational coordinate θ . The

062701-5

WALTERS, WEI, AND CHEN PHYSICAL REVIEW E 99, 062701 (2019)

raw Monte Carlo data has a line-by-line format [l, xl , yl , θl],
where l = 1, ..., N . The three main features, xl , yl , and θl are
input into the network model iteratively through the LSTM-
external layer, one after another. As a technical note, we
used a rather small RNN having only a single layer LSTM
of 64 hidden neurons, and a single perceptron layer of 128
neurons. Dropout, Adam optimization, and early stopping
were again used throughout the supervised training [29–31].

The performance of this RNN is exceptionally good in
identifying the defect states. Figures 3(c) and 3(d) demon-
strate that within an initial 20 epochs, our RNN efficiently
captures the main features of the four defect states, evaluated
on an unseen test dataset. We stress here that unlike the
procedure used to produce Figs. 3(a) and 3(b), we used the
raw, unsorted data as the input on our RNN experiment.

Another use of keen interest would be detecting which
types of nematic defects, usually represented by a winding
number, are present and and their locations in a larger nematic
image. The current approach of using the entire configuration
data in RNN is not ready for this task but we can extend our
method for this purpose. We could divide the large nematic
image into appropriately small cells, and use the data in each
cell as the input to RNN. Based on supervised learning, the
RNN could be trained to recognize a defect cell versus a
normal cell; then, at an application stage, the trained RNN
can be used to sweep through the entire image and identify
the type and location of a defect cell. Future study along this
direction is needed.

Without other analysis tools it is difficult to say which
exact topological features RNN is learning to distinguish the
XTUD image set. One could argue that the location of a
defect in a larger system is a point-like object, but the XTUD
topologies here, complete in their square confinement, are
compositions of bulky nematic patterns interrupted at defect
points [Figs. 1(e)–1(h)]. In a finite system such as the one
we take here, the exact division between defect points and
the overall nematic pattern becomes artificial. We intend to
believe that the RNN examines their entire topologies by
correlating the spatial-angular information.

Beyond liquid crystals, many other classes of materials
contain topological defects that are of practical or fundamen-
tal interest; some are detectable by the naked eye and some
are subtle to visualize. Especially when a molecular config-
uration file is given, either produced directly from computer
simulations or indirectly reproduced from real experiments,
the fluctuating microscopic configurations of all molecules
could obscure the existence of a certain topological feature.
Hence, it would be desirable to have a computer algorithm to
deal with the nontrivial task of identifying these states.

To design a classical algorithm to identify the topological
states, understanding the main features (for example, spatial
dimensionality, line defect versus point defect, the definition
of winding number, etc.) is required to describe a specific
nature of the state. Well-thought mathematical procedures
would be needed to capture the correlation (or discorrela-
tion) between defect regions for different states. Classification
would then require tools that identify defects, and then locate
defects reliably, and finally try to correctly classify this to
their human-defined templates. The NN model here presents
a universal and simple method that sidesteps this nontrivial

process by requiring only the raw data as input. The RNN can
masterfully learn these defect topologies by using its ability of
making correlations between data features, without asking the
question of the specific mathematical and physical properties
such as where to look for the defects and what kind of defects
a system could contain.

The neural network approach we suggested here is simple,
automated, and universal. While these are advantages, they
could be disadvantage as well. It is well known that machine
learning gives us excellent characterization accuracy but a
very poor understanding of how such characterizations are
made. In a scenario where we do not need to understand
which distinguishing features end up being important, our
current approach works well. In a different scenario where
a single few features stand out, further studies are needed
for capturing these, especially in an off-lattice system. Our
method can provide a near instantaneous computing time for
classification; however, it also required supervised training
on the order of tens of minutes, which, of course, could be
shortened with future computing technology and strategy.

V. SUMMARY

In this paper, we examined the ability of FNN and RNN in
learning and identifying the topological-defect configurations
produced from Monte Carlo simulations of a liquid-crystal
model. The predominating physical characteristics of the de-
fect pattern is the positioning of defects and its coupling with
the nematic pattern around the defects. Our main conclusions
include: For effective learning with an FNN the simulation
data must be presorted to restore the data ordering of spatial
information, and with an RNN no such presorting is needed.

Exploiting the RNN capability to correlate spatial features
(such as the topological defects) in their sequential inputs
is a novel use here. Our study opens up opportunities for
many other off-lattice applications of neural networks. By
iteratively feeding an RNN with features to be correlated, it
is able to correlate arbitrary numbers of interested features of
an off-lattice problem. This is particularly important as off-
lattice simulations usually produce datasets with no embedded
spatial ordering, whereas lattice simulations automatically
have spin labels implicitly representing spatial locations.

ACKNOWLEDGMENTS

We thank the Natural Sciences and Engineering Research
Council of Canada for financial support and Compute Canada
for providing computational resources.

APPENDIX A: MONTE CARLO SIMULATION

To generate the data pool to train our neural networks,
we adopt the Monte Carlo simulation method that generates
configurations of our molecular-level model. The simulated
system contains N rigid rods, each having length L, confined
to a 2D square area of side-length a. In 2D, a single rod can be
represented by a straight line, described by the center-of-mass
coordinates, [x, y], and the direction that the rod makes with
respect to the x-axis, θ [see Fig. 1(d)]. No rod thickness
is considered here, as in a 2D space, two infinitesimally

062701-6

MACHINE LEARNING TOPOLOGICAL DEFECTS OF … PHYSICAL REVIEW E 99, 062701 (2019)

thin rods already interact with each other by an excluded
“volume,” namely, an excluded area. A successfully generated
configuration contains the [l, xl , yl , θl] coordinates of all N
rodlike molecules, line by line for l = 1, 2, 3...N . The wall-
confinement effect is enforced by disallowing the intersection
of a rodlike molecule with the wall boundaries. Although the
macrostate of a system is specified by three parameters N , L,
and a, only two are relevant, N , and L/a.

A typical MC attempt of a randomly selected molecule
consists of a translational move by changing [x, y] and a
rotational move by changing θ about the rod center of mass.
These moves are realized by adding a coordinate shift within
the range [−�,�] (for the former) or an angular shift [−δ, δ]
(for the latter). Any moves that violate the excluded-area
constraint and the boundary conditions are rejected. The
magnitudes of � and δ are determined by trial and error to
maintain acceptance rates close to 50% [33], independently
for the translational and rotational moves, to allow sufficient
system evolution. An MC step (MCS) pertains to making N
MC attempts (one for each rod on average) described here.
To speed up the simulation, the cell-index technique [34] was
incorporated in the algorithm.

For a specified set of parameters, N and L/a, an initial
configuration was generated by placing the rodlike molecules
inside the box as a lattice with equal spacing, without concerns
of the excluded-area interaction and the boundary conditions.
The orientations of the rods would be purposely distributed
according to the desired defect configurations. Since we used
supervised learning with labeled images, the system had to
be in a known configuration. After this, each rod was given
small random positional and orientational shifts to add some
randomization. A rod-uncrossing period of the MC simulation
would follow; typically for density ρ ∼ 16, this period was
approximately 5 × 104 MCS.

All the DTUX data sets had N = 784 rods and a box-
edge to rod length ratio a/L = 6.32, amounting to a density
ρ = 19.63. The relatively high density ensures the lifetime of
metastable XTU states. Trapping of a particular type of defect
state depends on the initial condition. We take the approach
of randomly placing rods in the box to start with and then
align the directions of the rods according to a particular defect
pattern. This could yield the initial crossing between the rods
and between rods and walls. Then, an uncrossing MC period
was conducted. After that, the systems were run for 104 MCS
to further equilibrate the system. This was followed by taking
a “snapshot” (i.e., writing the rod coordinates and angles to
a file). For each topology, 4400 snapshots were taken from
independent runs, each having a different initial condition.
Among these, 4000 snapshots were used for training and
400 set aside for testing. To cover rotational degeneracy of the
topologies, an equal number of images were used by rotating
an angle π/2, π , and 3π/2.

APPENDIX B: THE ISOTROPIC-NEMATIC PHASE
TRANSITION AND FNN

In this work, we used the off-lattice model of rodlike
molecules confined in a square box as an example of a
system containing topological defects in its nematic state. The
dominating physical parameter is ρ. Above a critical value

ρ∗, the system is in the nematic (N) state showing a defect
pattern such as those in Fig. 1, and below ρ∗ the isotropic (I)
state where the rodlike molecules, away from the confinement
walls, have random orientations.

Although our main focus of the current work is detecting
topological defects in the nematic state, a highly related
question is: Can an FNN detect the I-N transition of the
system? As discussed in Refs. [2,3] an effective way to train
an FNN to learn the molecular configurations produced from
a simulation is via a supervised learning approach with clas-
sified images. Here, two classifications, I and N, correspond
to nodes (ν1, ν2), respectively. This is the same method used
in Sec. III but with no pre-sorting and two states instead of
four. Additionally for this study, configurations produced at
different values of ρ are required. At a fixed N , a series of
configurations are obtained with varying ρ by adjusting a/L
[see Eq. (1)]; this is achieved by a Monte Carlo procedure
described in Appendix A.

The FNN training session takes the molecular configura-
tions at two densities, ρ = 4 (when the system is in an I state)
and ρ = 16 (when the system is in a deep N state) so that it can
learn the difference between these two states. For this identifi-
cation we use the D defect state. Only the angles θl (l = 1, N)
recorded in an MC snapshot are needed here, hence the input
layer contains N nodes. The FNN had two hidden layers of
size 128 and 32. Expontential linear units were used, along
with early stopping, Adam optimization, and 50% dropout
[27,29–31]. The FNN easily learned the difference between
the I and N states, achieving approximately 99% accuracy
within 100 training epochs, tested on 600 independent images
not used in the training.

Having trained the FNN to identify the ideal I and N states,
we then query the network output on unidentified snapshot
data taken from MC simulations at various values of ρ in
the domain ρ = [4, 16]. A total of k = 5000 MC snapshots
were obtained for each value of ρ and fed into the input layer
of the trained FNN. The network looks for when any order
in angular values emerges. When isotropic, the θ input will
approach a uniform input (less the box edge alignment). Once
the system inclines towards the nematic state, the network will
pick up on deviations from this uniform input, signaling the
phase transition.

For a given value of ρ with k images, an average

ν̄1 = 1

k

k∑

i=1

ν
(i)
1

is used to identify how strongly the network believes that this
density gives an I state; ν̄2 for state N is also calculated in
the same fashion. These averages are plotted in Fig. 4. Near
the I-N transition point, due to the large fluctuations of the
molecular configurations, the network can only identify the
overall states by a percentage certainty. In recent literatures
[2,3,35], it is customary to use the ν̄1 = ν̄2 = 1/2 crossing
position as the flag to identify the critical point ρ∗. For system
sizes of N = 202, N = 242, and N = 282, our results sug-
gest ρ∗ = 6.71 ± 0.25, 6.95 ± 0.25, and 7.08 ± 0.25, respec-
tively. These values are comparable to those from previous
numerical and experimental studies, which suggest values of
ρ∗ of ≈7.0 [36], 6.5 [37], and 6–9 [16]; the mean-field theory

062701-7

WALTERS, WEI, AND CHEN PHYSICAL REVIEW E 99, 062701 (2019)

FIG. 4. Identification of the I-N transition point. An FNN is trained by using training files at low and high densities (ρ = 4 and 16 for the
I and N states, respectively). Then, the trained FNN is used to calculate the average outputs ν̄1 and ν̄2 at each given ρ. These characteristic
measures are to indicate if the system is in an I or N state, plotted by red and white squares, respectively. Error bars of these data points are
smaller than the symbol. The crossing point is defined as the I-N transition point. In the background, represented by circles (to the right scale),
an independent estimate of the variance of the orientational order parameter σ 2 (normalized) shows a peak at the transition point. The filled
and unfilled circles represent the statistics from the rods in the entire box and half-sized center region, respectively. The three plots, (a), (b),
and (c), are produced with system size N = 202, 242, and 282, respectively.

calculation of ρ∗ = 3π/2L2 ≈ 4.71 based on the Onsager
theory is a known underestimate [38,39].

While ρ∗ were estimated from the FNN study, we provide
here independent estimates from statistical physics for com-
parison. We start by calculating a nematic order parameter 	

for every configuration file. In 2D, we use the definition

	 ≡
√

C2 + S2, (B1)

where

C = 〈cos 2θ〉, S = 〈sin 2θ〉
are averages over the N rodlike molecules within a con-
figuration file. Note that in an ideal I state 	 = 0, and in
a uniformly aligned N state 	 = 1. Then, we analyze the
statistics of 	 calculated from the 5000 configurations used
for each ρ. According to statistical physics, the variance σ 2 =
〈	2〉 − 〈	〉2, plotted as a function of ρ, displays a peak at the
phase transition density ρ∗. Here 〈...〉 represents an algebraic
average of the 5000 data points. One can find the σ 2 data pre-
sented by light-blue circles in Fig. 4. Indeed, this independent
analysis produces peak positions closely matching the FNN
determination of ρ∗.

In the system sizes studied, the boundary effects can
permeate into a non-negligible portion of the domain. Mea-
surements of the order along the box edge are then likely
to produce values higher than the bulk in many cases from
rod-wall alignment [40–42]. The definition in Eq. (B1) is not
affected by these boundary effects if vertical and horizontal
boundaries make equal contributions to U and T . As an inde-
pendent check, we also used configurations of rods belonging
to a half-sized, centered box to evaluate σ 2. The unfilled
circles in Fig. 4 indicate the same transition density within
the numerical error.

APPENDIX C: SUPERVISED TRAINING AND
ACCURACY TESTING

This paper suggests two types of networks, FNN and
RNN, for identifying defect states in liquid-crystal systems.
As shown in Fig. 2, the output layers of both networks are
(ν1, ν2, ..., νn), each element being a number in the range (0,1)
and

∑
i νi = 1 by the normalization (softmax function) of the

final output. Hence, νi may be viewed as the confidence or
probability that the tested image is in state i.

To train the network to recognize the isotropic (I) and
nematic (N) states, only two output nodes (n = 2) are used
[Appendix B]. When training to learn the DTUX states, four
output nodes (n = 4) are needed (Secs. III and IV).

In supervised training, each image carries an identifier α

for the known state, and correspondingly the expected values
(να

1 , να
2 , ..., να

n). To train the network for the I-N states, for
example, α can be I or N, and

(
νI

1, ν
I
2

) = (1, 0), (C1)

(
νN

1 , νN
2

) = (0, 1). (C2)

To train the network for the DTUX states, α can be D, T, U,
or X, and

(
νD

1 , νD
2 , νD

3 , νD
4

) = (1, 0, 0, 0), (C3)

(
νT

1 , νT
2 , νT

3 , νT
4

) = (0, 1, 0, 0), (C4)

(
νU

1 , νU
2 , νU

3 , νU
4

) = (0, 0, 1, 0), (C5)

(
νX

1 , νX
2 , νX

3 , νX
4

) = (0, 0, 0, 1). (C6)

062701-8

MACHINE LEARNING TOPOLOGICAL DEFECTS OF … PHYSICAL REVIEW E 99, 062701 (2019)

In the process of supervised training, we feed K configura-
tion files to a network. The jth file, where j = 1, 2, ..., K , car-
ries a known identifier α j . Its data is then fed into the network
to produce an output (ν (j)

1 , ν
(j)
2 , ..., ν

(j)
n), whose values depend

on the network parameters known as weights and biases. We
attempt to match this output to the identifier α j listed above.
This is done by minimizing the cross entropy cost function,

S = − 1

K

K∑

j=1

n∑

i=1

ν
α j

i log ν
(j)
i , (C7)

with respect to the network parameters. As one can see, in
an idealized scenario when the network is perfectly trained,
S = 0, whereas an untrained network has S > 0. Network
parameters are updated multiple times per epoch. Plotting S
as a function of epoch step can indicate how fast a network
is learning (showing a decreasing S) or if the learning is not
going well (showing a plateau after multiple epochs).

A separate set of test configuration data files, not used
in the training, can benchmark the degree of learning of
the network during the training by providing a measurement
known as the accuracy A. A total of k such data files are
used and the jth file also carries a known identifier α j . We
consider an image correctly classified if the node with the
maximum output across (ν (j)

1 , ν
(j)
2 , ..., ν

(j)
n) is the same as

the maximum output node of (να j

1 , ν
α j

2 , ..., ν
α j
n). For example,

if testing on an image with label α j = T the NN output is
(0.03,0.91,0.03,0.03), then this would be a correct classifi-
cation and Aj = 1 is assigned. Otherwise, Aj = 0. Averaged
over all k test files, a mean accuracy A can be defined

A = 1

k

k∑

j=1

Aj . (C8)

APPENDIX D: FNN AND RNN APPLICATIONS OF
RECOGNIZING THE MNIST DATA

The MNIST dataset includes 6 × 104 training images and
104 testing images of handwritten numerical digits. One of
the images is shown in Fig. 1(a). An industrial standard
of machine learning is the correct identification of the 10
numerical digits in the MNIST set. It is well-known that deep
FNN is an effective tool for this purpose, reaching accuracies
above 99% [8]. The output layer shown in Fig. 2 now has
n = 10 nodes, each characterizing a digit, from 0, 1, 2, ..., 9.

A typical data set to represent an MNIST image has the
data structure Pi j , where i = 1, ...28 is the row number of the
pixels, and j = 1, ...28 the column number, and P the grey
scale “ink” intensity of the writing. Implicitly, when the data
is stored according to the order of i and j, spatial location
(that is, the pixel position specified by i and j) follows this
order. The configuration file of a 2D Ising model would have
a similar data structure where P has only two values, up and
down.

To compare with the off-lattice output data, we rewrite a
data point Pi j by a line of four numbers [l, il , jl , Pi j] where
l = 1, 2, . . . , 28 × 28 is a sequential number that labels il
and jl . This has the same data structure as the configura-
tional record obtained from an off-lattice molecular simula-

FIG. 5. Demonstration of the importance of pixel ordering for
MNIST recognition when FNN is used (circles) and the automatic
pixel-position and feature correlation for MNIST recognition when
RNN is used (squares). When the pixel ordering [green arrows in
Fig. 1(a)] is scrambled, an FNN cannot be trained adequately to
recognize the MNIST images, shown by the rising cost and low
accuracy on test data, even when the position-feature data are used
together in the input to Fig. 2(a). However, when the same data are
used with an RNN [Fig. 2(b)] the network can successfully identify
the 10 different digits, as shown by the minimal cost entropy and
near-perfect test set accuracy.

tion where a typical line reads [l, xl , yl , θl]. However, there
is one important difference: the MNIST data has a correlation
between l and (il , jl) in an orderly fashion, whereas in the off-
lattice coordinate record, there is no correlation between l and
xl , yl .

If we decorrelate l from (il , jl) but use (il , jl , Pi j) as the
input, then can an FNN still identify the numerical digits?
The decorrelation is done by scrambling the line ordering
of (il , jl , Pi j) data for each digit image. As demonstrated by
the circles in Figs. 5(a) and 5(b), the FNN now fails to learn
the correlation between i, j and Pi j . The FNN network looks
for the correlation between features (that is, i, j, and Pi j)
and the data ordering. This ordering, of course, is destroyed
in scrambling the line ordering. We can also demonstrate
that the coarse-graining method mentioned in the text helps
to reestablish the position-intensity correlation; the plots are
omitted here.

A strong contrast is the use of RNN. The three inputs to
LSTM blocks in Fig. 2(b) are now i, j, Pi j , in a random order
because of the intentional data scrambling. The cost function
S and test set accuracy A are shown in Fig. 5 by squares. The
RNN manages to effectively learn the correlation between i, j
and Pi j and successfully identifies all 10 numerical digits.

062701-9

WALTERS, WEI, AND CHEN PHYSICAL REVIEW E 99, 062701 (2019)

[1] G. Torlai and R. G. Melko, Phys. Rev. B 94, 165134 (2016).
[2] J. Carrasquilla and R. G. Melko, Nat. Phys. 13, 431 (2017).
[3] Q. Wei, R. G. Melko, and J. Z. Y. Chen, Phys. Rev. E 95, 032504

(2017).
[4] S. J. Wetzel and M. Scherzer, Phys. Rev. B 96, 184410 (2017).
[5] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. G. Melko,

and G. Carleo, Nat. Phys. 14, 447 (2018).
[6] A. Morningstar and R. G. Melko, J. Mach. Learn. Res. 18, 1

(2018).
[7] M. J. S. Beach, A. Golubeva, and R. G. Melko, Phys. Rev. B 97,

045207 (2018).
[8] J. Schmidhuber, Neural Netw. 61, 85 (2015).
[9] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. D.

Jackel, Y. LeCun, U. A. Muller, E. Sackinger, P. Simard et al.,
in Proceedings of the 12th IAPR International Conference on
Pattern Recognition, 1994. Vol. 2—Conference B: Computer
Vision & Image Processing (IEEE, Jerusalem, 1994), pp. 77–82.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Proc. IEEE 86,
2278 (1998).

[11] P. Broecker, J. Carrasquilla, R. G. Melko, and S. Trebst, Sci.
Rep. 7, 8823 (2017).

[12] K. Ch’ng, J. Carrasquilla, R. G. Melko, and E. Khatami, Phys.
Rev. X 7, 031038 (2017).

[13] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, in Ad-
vances in Neural Information Processing Systems 27, edited by
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K.
Q. Weinberger (Curran Associates, Red Hook, NY, 2014), pp.
2204–2212.

[14] T. Mikolov, W.-t. Yih, and G. Zweig, in Proceedings of the 2013
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies
(Association for Computational Linguistics, Atlanta, 2013),
pp. 746–751.

[15] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F.
Bougares, H. Schwenk, and Y. Bengio, in Proceedings of the
2014 Conference on Empirical Methods in Natural Language
Processing (Association for Computational Linguistics, Doha,
2014).

[16] J. Galanis, D. Harries, D. L. Sackett, W. Losert, and R. Nossal,
Phys. Rev. Lett. 96, 028002 (2006).

[17] M. Soares e Silva, J. Alvarado, J. Nguyen, N. Georgoulia, B. M.
Mulder, and G. H. Koenderink, Soft Matter 7, 10631 (2011).

[18] A. H. Lewis, I. Garlea, J. Alvarado, O. J. Dammone, P. D.
Howell, A. Majumdar, B. M. Mulder, M. P. Lettinga, G. H.

Koenderink, and D. G. A. L. Aarts, Soft Matter 10, 7865
(2014).

[19] L. B. G. Cortes, Y. Gao, R. P. A. Dullens, and D. G. A. L. Aarts,
J. Phys.: Condens. Matter 29, 064003 (2017).

[20] C. Tsakonas, A. J. Davidson, C. V. Brown, and N. J. Mottram,
Appl. Phys. Lett. 90, 111913 (2007).

[21] C. Luo, A. Majumdar, and R. Erban, Phys. Rev. E 85, 061702
(2012).

[22] J. Z. Y. Chen, Soft Matter 9, 10921 (2013).
[23] I. C. Garlea and B. M. Mulder, Soft Matter 11, 608 (2015).
[24] M. Robinson, C. Luo, P. E. Farrell, R. Erban, and A. Majumdar,

Liq. Cryst. 44, 2267 (2017).
[25] X. Yao, H. Zhang, and J. Z. Y. Chen, Phys. Rev. E 97, 052707

(2018).
[26] F. Rosenblatt, Psychol. Rev. 65, 386 (1958).
[27] D.-A. Clevert, T. Unterthiner, and S. Hochreiter,

arXiv:1511.07289 (2015).
[28] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C.

Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin et al.,
arXiv:1603.04467 (2016).

[29] G. Montavon, G. B. Orr, and K.-R. Müller, Neural Networks:
Tricks of the Trade (Springer, Berlin, 2003), pp. 53–67.

[30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, J. Mach. Learn. Res. 15, 1929 (2014).

[31] D. P. Kingma and J. Ba, arXiv:1412.6980 (2014).
[32] S. Hochreiter and J. Schmidhuber, Neural Comput. 9, 1735

(1997).
[33] D. Landau and K. Binder, A Guide to Monte Carlo Simulations

in Statistical Physics (Cambridge University Press, New York,
2005), pp. 231–237.

[34] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids
(Oxford University Press, Oxford, 2017), pp. 193–200.

[35] E. P. L. van Nieuwenburg, Y.-H. Liu, and S. D. Huber, Nat.
Phys. 13, 435 (2017).

[36] D. Frenkel and R. Eppenga, Phys. Rev. A 31, 1776 (1985).
[37] M. Cosentino Lagomarsino, M. Dogterom, and M. Dijkstra,

J. Chem. Phys. 119, 3535 (2003).
[38] R. F. Kayser and H. J. Raveché, Phys. Rev. A 17, 2067

(1978).
[39] Z. Y. Chen, Phys. Rev. Lett. 71, 93 (1993).
[40] A. Poniewierski, Phys. Rev. E 47, 3396 (1993).
[41] Z. Y. Chen and S.-M. Cui, Phys. Rev. E 52, 3876 (1995).
[42] J. Z. Y. Chen, D. E. Sullivan, and X. Yuan, Macromolecules 40,

1187 (2007).

062701-10

https://doi.org/10.1103/PhysRevB.94.165134
https://doi.org/10.1103/PhysRevB.94.165134
https://doi.org/10.1103/PhysRevB.94.165134
https://doi.org/10.1103/PhysRevB.94.165134
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4035
https://doi.org/10.1103/PhysRevE.95.032504
https://doi.org/10.1103/PhysRevE.95.032504
https://doi.org/10.1103/PhysRevE.95.032504
https://doi.org/10.1103/PhysRevE.95.032504
https://doi.org/10.1103/PhysRevB.96.184410
https://doi.org/10.1103/PhysRevB.96.184410
https://doi.org/10.1103/PhysRevB.96.184410
https://doi.org/10.1103/PhysRevB.96.184410
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
http://www.jmlr.org/papers/volume18/17-527/17-527.pdf
https://doi.org/10.1103/PhysRevB.97.045207
https://doi.org/10.1103/PhysRevB.97.045207
https://doi.org/10.1103/PhysRevB.97.045207
https://doi.org/10.1103/PhysRevB.97.045207
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/s41598-017-09098-0
https://doi.org/10.1038/s41598-017-09098-0
https://doi.org/10.1038/s41598-017-09098-0
https://doi.org/10.1038/s41598-017-09098-0
https://doi.org/10.1103/PhysRevX.7.031038
https://doi.org/10.1103/PhysRevX.7.031038
https://doi.org/10.1103/PhysRevX.7.031038
https://doi.org/10.1103/PhysRevX.7.031038
https://doi.org/10.1103/PhysRevLett.96.028002
https://doi.org/10.1103/PhysRevLett.96.028002
https://doi.org/10.1103/PhysRevLett.96.028002
https://doi.org/10.1103/PhysRevLett.96.028002
https://doi.org/10.1039/c1sm06060k
https://doi.org/10.1039/c1sm06060k
https://doi.org/10.1039/c1sm06060k
https://doi.org/10.1039/c1sm06060k
https://doi.org/10.1039/C4SM01123F
https://doi.org/10.1039/C4SM01123F
https://doi.org/10.1039/C4SM01123F
https://doi.org/10.1039/C4SM01123F
https://doi.org/10.1088/1361-648X/29/6/064003
https://doi.org/10.1088/1361-648X/29/6/064003
https://doi.org/10.1088/1361-648X/29/6/064003
https://doi.org/10.1088/1361-648X/29/6/064003
https://doi.org/10.1063/1.2713140
https://doi.org/10.1063/1.2713140
https://doi.org/10.1063/1.2713140
https://doi.org/10.1063/1.2713140
https://doi.org/10.1103/PhysRevE.85.061702
https://doi.org/10.1103/PhysRevE.85.061702
https://doi.org/10.1103/PhysRevE.85.061702
https://doi.org/10.1103/PhysRevE.85.061702
https://doi.org/10.1039/c3sm51991k
https://doi.org/10.1039/c3sm51991k
https://doi.org/10.1039/c3sm51991k
https://doi.org/10.1039/c3sm51991k
https://doi.org/10.1039/C4SM02087A
https://doi.org/10.1039/C4SM02087A
https://doi.org/10.1039/C4SM02087A
https://doi.org/10.1039/C4SM02087A
https://doi.org/10.1080/02678292.2017.1290284
https://doi.org/10.1080/02678292.2017.1290284
https://doi.org/10.1080/02678292.2017.1290284
https://doi.org/10.1080/02678292.2017.1290284
https://doi.org/10.1103/PhysRevE.97.052707
https://doi.org/10.1103/PhysRevE.97.052707
https://doi.org/10.1103/PhysRevE.97.052707
https://doi.org/10.1103/PhysRevE.97.052707
https://doi.org/10.1037/h0042519
https://doi.org/10.1037/h0042519
https://doi.org/10.1037/h0042519
https://doi.org/10.1037/h0042519
http://arxiv.org/abs/arXiv:1511.07289
http://arxiv.org/abs/arXiv:1603.04467
http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://arxiv.org/abs/arXiv:1412.6980
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1038/nphys4037
https://doi.org/10.1038/nphys4037
https://doi.org/10.1038/nphys4037
https://doi.org/10.1038/nphys4037
https://doi.org/10.1103/PhysRevA.31.1776
https://doi.org/10.1103/PhysRevA.31.1776
https://doi.org/10.1103/PhysRevA.31.1776
https://doi.org/10.1103/PhysRevA.31.1776
https://doi.org/10.1063/1.1588994
https://doi.org/10.1063/1.1588994
https://doi.org/10.1063/1.1588994
https://doi.org/10.1063/1.1588994
https://doi.org/10.1103/PhysRevA.17.2067
https://doi.org/10.1103/PhysRevA.17.2067
https://doi.org/10.1103/PhysRevA.17.2067
https://doi.org/10.1103/PhysRevA.17.2067
https://doi.org/10.1103/PhysRevLett.71.93
https://doi.org/10.1103/PhysRevLett.71.93
https://doi.org/10.1103/PhysRevLett.71.93
https://doi.org/10.1103/PhysRevLett.71.93
https://doi.org/10.1103/PhysRevE.47.3396
https://doi.org/10.1103/PhysRevE.47.3396
https://doi.org/10.1103/PhysRevE.47.3396
https://doi.org/10.1103/PhysRevE.47.3396
https://doi.org/10.1103/PhysRevE.52.3876
https://doi.org/10.1103/PhysRevE.52.3876
https://doi.org/10.1103/PhysRevE.52.3876
https://doi.org/10.1103/PhysRevE.52.3876
https://doi.org/10.1021/ma062160m
https://doi.org/10.1021/ma062160m
https://doi.org/10.1021/ma062160m
https://doi.org/10.1021/ma062160m

